Matrix-Isolation FTIR Studies and Theoretical Calculations of Hydrogen-Bonded Complexes of Imidazole. A Comparison between Experimental Results and Different Calculation Methods

Marlies K. Van Bael,[†] Johan Smets,^{†,‡} Kristien Schoone,[†] Linda Houben,[†] William McCarthy,[‡] Ludwik Adamowicz,[‡] Maciej J. Nowak,[§] and Guido Maes^{*,†,||}

Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001, Heverlee, Belgium, Department of Chemistry, University of Arizona, Tucson, Arizona 85721, and Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland

Received: November 6, 1996[⊗]

The hydrogen bond interaction between water and imidazole was investigated with the matrix-isolation FTIR spectroscopy coupled to *ab initio* calculations performed with the RHF and MP2 methods and the parametrized DFT method with the B3LYP hybrid functional. The 6-31G** and 6-31++G** basis sets were used in the calculations. Evaluation of the accuracy of the three methods and the two basis sets was made for noncomplexed imidazole. All three of the methods gave geometries for imidazole in good agreement with the experimental structure. Also, all three levels of theory with both basis sets gave similarly accurate vibrational frequency predictions for monomeric imidazole with a best mean deviation for the DFT/B3LYP/ $6-31++G^{**}$ method. The assignment of the matrix spectra of the two isomeric H-bond complex species, N-H···OH₂ and N···H-OH, was performed by comparison with the theoretically predicted IR frequencies and intensities and was further assisted by asymmetrical deuteration experiments. The MP2 and DFT methods employed with the basis set augmented with diffuse functions gave good predictions of the frequency shifts for the vibrational modes directly influenced by the H-bond interaction. For the other vibrational modes, the RHF method performed almost as equally well as the MP2 and DFT methods and we can conclude that this method can provide qualitative and quantitively reliable data on hydrogen-bonded systems.

Introduction

In a former series of reports, we demonstrated that the coupling of matrix-isolation FTIR spectrometry to *ab initio* computational methods can now be considered as one of the most suitable approaches for evaluating intrinsic tautomeric and H-bonding characteristics of polyfunctional bases. This experimental—theoretical approach allowed a detailed description of the tautomeric and H-bonding behavior of cytosines when applied to a series of model molecules with significant increasing tautomeric and H-bonding complexity.¹ Useful correlations between the *ab initio* predicted (water) complex parameters, such as interaction energies and scaling factors for the H-bonded vibrational modes, and experimental parameters, such as frequency shifts and proton affinities, were established, and these may help in the interpretation of experimental vibrational spectra of H-bonded polyfunctional molecules.²

The *ab initio* methodology that we have previously used to study rather large H-bonded systems, e.g., $1-CH_3$ -cytosine·H₂O, involved extended basis sets ($6-31++G^{**}$), combined with the RHF (restricted hartree fock) method and MP2 (the electron correlation effects accounted for by the second-order perturbation theory), to calculate parameters such as the relative and H-bond energies and vibrational modes. The obtained results have usually agreed very well with the experimentally observed frequencies and frequency shifts when proper scaling factors were applied to the predicted frequency values. Owing to

constantly improving computational capabilities and the increasing popularity of density functional theory (DFT) methods, there exists a tendency to leave the relatively fast RHF method behind. In this paper we compare geometry, energy, and vibrational frequency predictions obtained at three levels of theory, RHF, MP2 (MP2 = MBPT2 second-order many-body perturbation theory), and DFT/B3LYP (see Theoretical Method), and two basis sets (6-31G** and 6-31++G**) for monomeric and hydrogen-bonded imidazole (IM), and with the experimental matrix-isolation data. The last two theoretical methods account for the majority of the electron correlation effects, the former in a pure *ab initio* way by treating the electron correlation as a perturbation to the Hartree-Fock Hamiltonian and the latter by using functionals parametrized based on some empirical qualities to account for the exchange and correlation energy contributions.

Recently, a large number of papers have reported on the quality of DFT methods and their ability to predict geometries, harmonic frequencies, and binding energies.^{3–13} The B3LYP hybrid method seems to be the best developed so far for this purpose. Rauhut and Pulay demonstrated that the hybrid DFT method is a reliable tool for prediction and interpretation of IR spectra of organic molecules, with the best mean deviation of 18.5 cm⁻¹ for vibrations on some selected 31 organic molecules.8 Recently, Kwiatkowski and Leszczynski reported predicted spectra of the most stable tautomers of cytosine at the RHF/6-31G** and DFT/B3LYP/6-31G** levels of theory and compared them with the matrix-isolated IR spectra.¹³ They concluded that both methods provide IR frequencies and intensities with similar quality. Salahub et al. demonstrated the need for gradient corrected functionals in the DFT calculations of the H-bonded water dimer and the formamide-water dimer.³ Del Bene et al. tested the B3LYP DFT method for eight different

[†] University of Leuven.

[‡] University of Arizona.

[§] Polish Academy of Sciences.

^{II} Senior Research Associate of the Belgian National Fund for Scientific Research.

^{*} To whom correspondence should be addressed.

[®] Abstract published in Advance ACS Abstracts, March 1, 1997.

TABLE 1: Internal Coordinates^{*a*} Used in the Normal Mode Analysis for Imidazole, Imidazole \cdot H₂O N₄ \cdots HOH Complex, and N₁H \cdots OH₂ Complex

(a) Imidazol	e
$S_1 = r_{1,2}$	$\nu(N_1C_2)$
$S_2 = r_{2,3}$	$\nu(C_2C_3)$
$S_3 = r_{3,4}$	$\nu(C_3N_4)$
$S_4 = r_{4,5}$	$\nu(N_4C_5)$
$S_5 = r_{5,1}$	$\nu(C_5N_1)$
$S_6 = r_{1.8}$	$\nu(N_1H_8)$
$S_7 = r_{2.6}$	$\nu(C_2H_6)$
$S_8 = r_{3.7}$	$\nu(C_3H_7)$
$S_0 = r_{5,0}$	$\nu(C_5H_0)$
$S_{10} = (2^{-1/2}) (\delta_{6,1,2} - \delta_{6,2,2})$	$\delta(C_2H_4)$
$S_{10} = (2^{-1/2}) \left(\delta_{0,1,5} - \delta_{0,4,5} \right)$	$\delta(C_{\varepsilon}H_{0})$
$S_{11} = (2^{-1/2}) (\delta_{7,2,2} - \delta_{7,4,2})$	$\delta(C_{2}H_{2})$
$S_{12} = (2^{-1/2}) (\delta_{0,5,1} - \delta_{0,2,1})$	$\delta(N_1H_2)$
$S_{13} = (2) (08,5,1 08,2,1)$	$\gamma(N,H_{-})$
$S_{14} = \gamma_{8,2,1,5}$ $S_{14} = \gamma_{8,2,1,5}$	$\gamma(\mathbf{C}\cdot\mathbf{H})$
$S_{15} = \gamma_{6,1,2,3}$	$\gamma(C_2\Pi_6)$
$S_{16} = \gamma_{9,4,5,1}$	$\gamma(C_{5}H_{9})$
$S_{17} - \gamma_{7,2,3,4}$ $S_{17} - (2,5^{-1/2})(8)$	$\gamma(C_3\Pi_7)$
$S_{18} - (2.5 -)(0_{5,2,1} + $	O _{R1}
$d(o_{1,4,5} + o_{1,3,2}) + $	
$b(o_{5,3,4} + o_{2,4,3}))^{b}$	\$
$S_{19} = (1/3)((a - b))$	O _{R2}
$b)(o_{1,3,2} - o_{1,4,5}) + (1 - c_{1,4,5}) + $	
$(1-a)(\delta_{5,3,4}-\delta_{2,4,3}))$	
$S_{20} = (2.5^{-1/2}) (\tau_{2,3,4,5} +$	$ au_{ m R1}$
$b(\tau_{5,1,2,3} + \tau_{2,1,5,4}) +$	
$a \left(\tau_{1,2,3,4} + \tau_{1,5,4,3} \right) $	
$S_{21} = (1/3) ((a - $	$ au_{ m R2}$
b) $(\tau_{1,2,3,4} - \tau_{1,5,4,3}) +$	
$(1-a)(\tau_{5,1,2,3}-\tau_{2,1,5,4}))$	
(b) Imidazole•H ₂ O N ₄ •••H	IOH Complex
$S_{22} = (2^{-1/2})(r_{10,11} + r_{12,11})$	$\nu^{\rm f}_{\rm OH}$
$S_{23} = (2^{-1/2})(r_{10,11} - r_{12,11})$	ν^{b}_{OH}
$S_{24} = r_{4,11}$	$\nu_{(N\dots HO)}$
$S_{25} = \delta_{10,11,12}$	δ(μομ)
$S_{26} = (2^{-1/2}) (\delta_{1045} - \delta_{1043})$	$\delta_{(N-HO)}$
$S_{27} = (2^{-1/2}) (\delta_{1145} - \delta_{1143})$	i.p. butterfly
$S_{28} = \gamma_{11453}$	o.o.p. butterfly
$S_{29} = \gamma_{10,4,5,3}$	N····HO o.o.p. wag
$S_{30} = (2^{-1/2}) (\tau_{12} + \tau_{13} + \tau_{12})$	HO torsion about N···OH
(a) N HOH Co	mular
$(C) N_1 H^{-1} O H_2 C O$	as
$S_{22} = (2^{-1/2})(r_{11,10} + r_{12,10})$ $S_{22} = (2^{-1/2})(r_{21,10} + r_{12,10})$	V HOH
$S_{23} = (2^{-n-1})(r_{11,10} - r_{12,10})$	V ⁻ HOH
$S_{24} - r_{1,10}$ $S_{10} - \delta$	VN···HO
$S_{25} - O_{12,11,10}$	O _{HOH}
$S_{26} - O_{10,1,2}$	U.O. a material state
$S_{27} - O_{11,1,2}$	$H_2 \cup 0.0.p.$ translation
$S_{28} = o_{12,1,10}$	H_2O 1.p. wag
$S_{29} = \gamma_{10,1,5}$	1.p. butterfly
$S_{30} = (2^{-1/2})(\tau_{12,10,1,2} + \tau_{11,10,1,2})$	H ₂ O twist

^{*a*} $r_{i,j}$ indicates stretch of bond i - j, $\delta_{i,j,k}$ bend of the angle between the bonds i - j and j - k, $\gamma_{i,j,k,l}$ bend of the bond i - k out of the plane defined by the bonds j - k and i - l, and $\tau_{i,j,k,l}$ torsion of the plane defined by the bonds i - j and j - k with respect to the plane defined by the bonds j - k and k - l, o.o.p. out of plane, i.p in plane. ^{*b*} a =-0.809; b = 0.309. ^{*c*} Atom numbering as in Scheme 1.

H-bonded complexes and concluded that the B3LYP/6-31G** method fails to yield reliable binding energies, intermolecular distances, and vibrational frequencies. The use of a larger basis set $(6-31+G^{**})$ yielded better data, but the MP2/6-31+G** results were still in better agreement with experimental results.⁹

Our studies on IM and its complexes with water are motivated by its occurrence in nucleic acid bases as the 5-ring part of adenine and guanine. In the presence of one water molecule, hydrogen bonding gives rise to two possible complexes where either IM or water acts as the proton donor: $N-H\cdotsOH_2$ and $N\cdotsH-OH$. The vibrational spectrum of IM has been studied in the gas phase¹⁴ and in Ar matrices.¹⁵ *Ab initio* studies of IM have been limited to the RHF/3-21G¹⁶ and RHF/4-21G^{16,17} levels. The H-bonding between IM and H₂O have been

Figure 1. FTIR spectrum of imidazole in Ar at 12 K (w = water impurity).

investigated at the RHF and MP2 levels.^{18–20} DFT calculations have not yet been performed for IM and their H-bonded complexes.

In this paper we compare results of three different computational methods (RHF, MP2, and DFT/B3LYP) and two basis sets (6-31G** and 6-31++G**) with new experimental data for water complexes of IM isolated in Ar matrices. To our knowledge, this is the first time such a comparison is made for larger H-bonded complexes, employing more extended basis sets and the gradient-corrected functionals in the DFT method. The present results allow us to critically review the accuracy of our previous studies of cytosine model molecules that were made at the SCF/6-31++G** and MP2/6-31++G** levels.^{1,2} They also provide an initial theoretical approach that will be needed to assign spectra of an adenine model system, which will be studied next.

Methodology

Experimental Method. The cryogenic (Air Products Displex 202E) and the FTIR (Bruker IFS-88) equipment used in this work have been described in detail previously.^{21,22} To evaporate the solid IM into the jet of argon, the homemade minifurnace ²² was installed into the cryostat and the optimal sublimation temperatures were found to be 20 °C at an Ar deposition rate of 5 mmol/h⁻¹. Dimerization of IM in Ar occurs only above sublimation temperatures of 25 °C.²³ IM/H₂O/Ar samples were studied at IM/Ar ratios similar to those applied in the study of the monomeric IM, while the IM/H₂O ratio varied between 1/1 and 1/5. As has been demonstrated before, ^{1b,21} the latter ratio ensures an excess amount of 1:1 H-bonded complexes IM/H₂O to be present in the Ar matrix with still rather weak spectral manifestations of higher stoichiometry complexes, which are not discussed in this paper.

The compound IM (99%) was commercially available from Janssen Chimica. Although the deuterated compound IM- d_4 was also commercially available (Aldrich Europe), the extent of deuteration appeared to be only about 70%. However, this was sufficient for the purpose of discrimination between the two complexes considered in this work. Twice-distilled water was used for the experiments with water-doped samples, while Ar gas of the highest purity available (99.9999%) from Air Liquide was used in all experiments.

Theoretical Method. Three different computational methods were used in this work, and for all three of them the $6-31++G^{**}$ and $6-31G^{**}$ basis sets were employed for the molecular orbital expansion. First, we considered the Hartree–Fock method. The RHF/ $6-31++G^{**}$ level of theory has been demonstrated in our previous studies to produce quite accurate results for isolated

TABLE 2: RHF, DFT/B3LYP, and MP2 Predicted Geometry Parameters of Imidazole and the H-Bonded Complexes with Water Using the 6-31++G** and the 6-31G** Basis Sets

			fre	ee			N ₁ —H···OH	2	N4••••HO—H		
		RHF	MP2	DFT	expt ³²	RHF	MP2	DFT	RHF	MP2	DFT
					Dista	nces (Å)					
$N_1 - C_2$	а	1.372	1.377	1.381	1.377	1.369	1.375	1.379	1.373	1.377	1.382
	b	1.372	1.375	1.380	1.369	1.373	1.377	1.372	1.375	1.381	
$C_2 - C_3$	а	1.353	1.380	1.375	1.364	1.355	1.381	1.376	1.352	1.379	1.373
	b	1.351	1.377	1.372	1.352	1.379	1.374	1.349	1.377	1.371	
$C_3 - N_4$	а	1.371	1.378	1.379	1.382	1.370	1.378	1.378	1.372	1.378	1.379
	b	1.371	1.376	1.378	1.370	1.375	1.378	1.372	1.376	1.378	
$N_4 - C_5$	а	1.291	1.327	1.316	1.314	1.294	1.330	1.319	1.293	1.329	1.318
	b	1.289	1.324	1.315	1.292	1.328	1.318	1.292	1.327	1.318	
$C_5 - N_1$	а	1.350	1.368	1.368	1.364	1.347	1.365	1.366	1.347	1.364	1.364
	b	1.350	1.366	1.367	1.346	1.363	1.364	1.345	1.362	1.362	
N_1-H	а	0.993	1.008	1.009	0.998	0.998	1.015	1.016	0.993	1.009	1.009
	b	0.992	1.007	1.008	0.998	1.016	1.019	0.992	1.007	1.008	
C_2-H	а	1.069	1.076	1.079	1.079	1.069	1.076	1.079	1.068	1.076	1.079
	b	1.069	1.075	1.079	1.069	1.075	1.079	1.068	1.075	1.079	
C ₃ -H	а	1.070	1.078	1.081	1.078	1.070	1.077	1.081	1.069	1.077	1.080
	b	1.070	1.077	1.081	1.070	1.077	1.082	1.070	1.076	1.080	
C_5-H	а	1.071	1.078	1.081	1.079	1.071	1.077	1.081	1.071	1.077	1.081
	b	1.071	1.077	1.081	1.071	1.078	1.082	1.071	1.076	1.080	
H····O or H····N	а	2.063	1.938	1.955	2.089	1.945	1.928				
	b	2.032	1.922	1.913	2.109	2.006	1.981				
N···O	а	3.061	2.953	2.972	3.031	2.915	2.904				
	b	3.030	2.938	2.932	2.971	2.881	2.860				
O−H (water)	а	0.943	0.963	0.965	0.96	0.944	0.965	0.965	0.951°	0.977^{c}	0.981°
		0.943	0.963	0.965	0.944	0.965	0.965	0.942^{d}	0.963^{d}	0.964^{d}	
	b	0.943	0.961	0.965	0.96	0.943	0.962	0.965	0.950°	0.972^{c}	0.976°
		0.943	0.961	0.965	0.943	0.962	0.965	0.943^{d}	0.962^{d}	0.965^{d}	
					Angl	es (deg)					
$N_1C_2C_3$	а	105.23	104.96	105.07	105.48	105.47	105.30	105.40	105.31	105.11	105.21
	b	105.16	104.89	105.02	105.51	105.27	105.43	105.30	105.02	105.17	
$C_2C_3N_4$	а	110.35	110.85	110.66	110.69	110.24	110.75	110.53	110.08	110.41	110.22
	b	110.50	111.05	110.84	110.34	110.94	110.72	110.17	110.55	110.34	
$C_3N_4C_5$	а	105.47	105.07	105.43	104.93	105.24	104.79	105.12	105.73	105.61	105.91
	b	105.32	104.87	105.18	105.05	104.51	104.80	105.63	105.46	105.74	
$H_8N_1C_2$	а	126.78	126.19	126.32	126.90	126.98	126.50	126.62	126.14	126.27	
	b	126.76	126.12	126.28		127.00	126.49	126.67	126.76	126.07	126.26
HOH (water)	а	107.09	105.36	105.74	104.5	107.41	106.04	106.51	106.70	105.02	105.62
	b	105.99	103.83	103.75		106.89	104.89	105.00	105.43	103.03	106.38

^a 6-31++G** basis set. ^b 6-31G** basis set. ^c H-bonded H atom. ^d Free H atom.

SCHEME 1

molecules of nucleic bases and some model molecules.^{1,2} The comparison of the two basis sets allows us to estimate the importance of the diffuse functions.

The HF energy is given as

$$E_{\rm HF} = E_{\rm T} + E_{\rm V} + E_{\rm J} + E_{\rm X}$$

where $E_{\rm T}$ is the kinetic energy, $E_{\rm V}$ the potential energy involving the nuclei, and $E_{\rm J}$ and $E_{\rm X}$ are the Coulomb and exchange parts of the electron–electron repulsion energy.²⁴ The RHF method was used in the present mode for optimizations of molecular structures, which were followed by single-point MP2 calculations with the same basis set. The MP2 energy obtained for the RHF optimized molecular structure will be denoted as MP2//RHF.

The choice of the basis set was based on the consideration that in order to accurately represent the electronic structure of the monomers with special emphasis on the peripheral regions of the wave functions, which are important for weak intermolecular bonding effects, it is essential to employ sets of orbitals that possess sufficient diffuseness and angular flexibility.²⁵ To account for electron correlation in the optimization of monomeric IM, we used the second-order many-body perturbation method (MBPT2 or MP2) and the density functional theory

Figure 2. Comparison between the experimental spectrum of imidazole in Ar (12 K) (A) and the spectra predicted at DFT/B3LYP (B), MP2 (C), and RHF (D) levels using the $6-31G^{**}$ basis set (only the main band of the experimental multiplets are shown in (A)).

(DFT) method with the hybrid of Becke's nonlocal threeparameter exchange and correlated functional with the Lee– Yang–Parr correlation functional.^{26,27} The DFT energy is given as

$$E_{\rm DFT} = E_{\rm HF} - E_{\rm X} + E_{\rm XC}$$

where $E_{\rm XC}$ is defined by the following exchange correlation functional:

$$E_{\rm XC} = a_0 E_{\rm X}^{\rm UEG} + (1 - a_0) E_{\rm X}^{\rm HF} + a_{\rm x} \Delta E_{\rm x} + E_{\rm c}^{\rm UEG} + a_{\rm c} \Delta E_{\rm c}$$

wherein $E_{\rm X}^{\rm UEG}$ and $E_{\rm C}^{\rm UEG}$ are the density functionals for the exchange and correlation in the uniform electron gas, $E_{\rm X}^{\rm HF}$ the Hartree–Fock exchange energy, and the ΔE terms are the nonlocal exchange- and correlation-type gradient corrections. The coefficients used in the formula are the ones from Becke, $a_0 = 0.80$, $a_{\rm x} = 0.72$, and $a_{\rm c} = 0.81$, determined from a best fitting of the heats of formation of a representative set of molecules.²⁶ The integration grid used in the DFT method was the so-called fine grid of the GAUSSIAN package, which consists of 75 radial shells and 302 angular points for every atom.

The total energy was corrected for the zero-point vibrational energy calculated with single scaling factors (0.90 for RHF, 0.96 for MP2, and 0.97 for DFT). The IR frequencies and intensities were computed analytically, for RHF and DFT, and numerically, for MP2, by the standard procedures incorporated in the programs GAUSSIAN 92 and GAUSSIAN 94.²⁸

In order to express normal coordinates in terms of a moleculefixed coordinate system, internal coordinates were defined for the monomers and symmetry coordinates were expressed in terms of these internal coordinates. Table 1 lists internal and symmetry coordinates for IM. The potential energy distribution (PED) of the vibrational modes over the internal coordinates was calculated using the following steps. First, linear transformation matrices were found for the Cartesian, normal, and internal coordinates. Next, the Cartesian force constant matrix was transformed into the force constant matrix expressed in the internal coordinates. The basis for the PED matrix elements was then calculated with the following expression:

$$\lambda_{i} = \sum_{\rho\sigma}^{3N-6} L_{\rho i} F_{\rho\sigma} L_{\sigma i}$$

where L is the linear transformation matrix between the internal

Figure 3. $\nu_3 - \nu_1(H_2O)$ and ν_{NH} region of the FTIR spectrum of imidazole/Ar (A) and imidazole/H₂O/Ar (B, C) at 12 K: (B) H₂O/Ar = 1/1000; (C) H₂O/Ar = 1/500; \uparrow = N–H···OH₂ complex; * = N··· HO–H complex; D, T = water dimer, trimer).

and normal coordinates and F the force constant matrix in the internal coordinates.²⁹

The PED_i ρ PED-matrix element PED_i $\rho = \sum_{\sigma}^{3N-6} L_{\rho i} F_{\rho \sigma} L_{\sigma i} / \lambda_i$ represents the contribution usually expressed of the molecular vibration along the ρ th internal coordinate to the molecular vibration along the *i*th normal coordinate.

In the calculations for the H-bonded complexes with H_2O , a similar approach was followed as described above.

In the case of the bonded water modes that are characterized by larger anharmonicities, the formerly developed anharmonicity correction procedure^{1,2} was applied in order to compare the predicted frequencies and frequency shifts with their experimental analogues. The total energy of the complexes was computed as for the IM monomer, but the results were corrected for the basis set superposition error (BSSE) by recalculating the monomer energies in the basis set of the hetero-dimers using the so-called counterpoise method.^{30,31}

The BSSE corrected interaction energy is then calculated as

$$\Delta E_{\text{A}\cdots\text{B}} = E_{\text{A}\cdots\text{B}} - E_{\text{A}(\text{B})} - E_{\text{B}(\text{A})}$$

where $E_{A\cdots B}$ is the energy of the H-bonded complex, E_A the energy of the monomer A obtained with the extra ghost Gaussian functions placed at the positions of the nuclei of B, and E_B the energy of monomer B obtained with the extra ghost functions placed at the positions of the nuclei of A.

Results and Discussion

Monomer Compound in Ar. All three levels of theory yield bond distances and bond angles quite close to the experimental

TABLE 3: Experimental (Ar Matrix) and Calculated (RHF, MP2, or DFT/ $6-31++G^{**}$) Vibrational Data for Imidazole (in a Band Pair the Most Intense Absorption Is Italicized)

ex	kptl	ca	lcd ν (cm	-1)	exp	tl <i>I</i> (km/r	nol)	calc	ed I (km/	/mol				
ν (cm ⁻¹)	ref 15 (cm ⁻¹)	RHF ^a	$MP2^{b}$	DFT^{c}	RHF ^d	$MP2^{e}$	DFT ^f	RHF	MP2	DFT	PED^g	RHF	MP2	DFT
3500	3504	3535 3496	3575 3463	3558 3484	103	77	57	103	77	57	$\nu(N_1H)$	99	100	100
3114?		3113	3226 3125	3192 3126	<1	<1	<1	2	<1	1	$\nu(C_2H)$ $\nu(C_3H)$	79 30	78 20	86 13
		3087	3202 3102	3164 3099	<1	<1	<1	1	3	5	$\nu(C_5H)$ $\nu(C_3H)$	25 57	79	84
3090?		3086	3208	3164				7	<1	1	$\nu(C_2H)$ $\nu(C_3H)$	18 22	20	12
1524/1522	1518	1557	3108 1498	1516	8	7	4	25	6	12	$\nu(C_5H)$ $\nu(C_2C_3)$	74 26	97 40	95 33
				1524							$\delta(N_1H)$ $\nu(N_4C_5)$	13 36	18 14	16 13
1483	1480	1487	1464	1461	14	11	8	29	27	23	$\nu(N_4C_5)$	12 15	13 26	13 20
				1468							$v(C_5H)$ $v(C_5N_1)$	17	26 14 16	21 11
1415/1407	1404	1420	1407	1205	12	10	7	26	10	16	$\nu(C_2C_3)$	21 26	10	30
1415/140/	1404	1420	1427	1395	15	10	/	26	19	16	$\nu(N_1C_2)$ $\delta(N_1H)$	43 20	28 27	38
1000/1000	1002	10.17	1000	1000				10	0	_	$\nu(C_5N_1)$ $\nu(C_2C_3)$	20 12	21	21 10
1339/1333	1325	1347	1339	1333 1340	3	2	2	10	8	7	$\nu(N_4C_5)$ $\delta(C_3H)$	32 22	25 25	31 23
						_					$\nu(C_3N_4)$ $\nu(C_2C_3)$	16 13	23	19 10
1256	1252	1264	1245	1247 1254	<]	<1	<1	<1	1	<1	$\delta(C_5H)$ $\delta(C_3H)$	49 21	47 21	49 21
											$\nu(N_4C_5)$ $\delta(C_2H)$	11 11	17	12 10
1132/1124	1130	1108	1143	1132 1138	4	2	1	5	3	4	$\nu(C_3N_4)$ $\nu(N_1C_2)$	58 19	53 29	60 24
1106/1103	1120	1125	1122	1116 1121	2	3	2	6	4	4	$\nu(C_5N_1)$ $\delta(C_2H)$	29 19	33 14	23 16
											$\nu(C_2C_3)$ $\delta(C_3H)$	17 16	12 11	11 12
											$\delta(N_1H) \\ \delta(C_5H)$		18 11	14 12
1082/1076	1074	1065	1077	1066 1072	12	9	7	16	26	23	$\delta(N_1H) \\ \delta(C_3H)$	18 16	22 23	25 18
											$ \begin{array}{l} \nu(C_2C_3) \\ \nu(N_1C_2) \end{array} $	14	16 14	13 14
<i>1059</i> /1048	1056	1037	1054	1045	33	25	18	60	30	40	$\nu(C_5N_1)$ $\delta(C_2H)$	29 21	34	18 31
				1050							$\frac{\nu(N_1C_2)}{\nu(C_5N_1)}$	47	17 14	26 12
927	916	913	901	912 917	<1	<1	<1	2	2	2	$\delta_{ m R1}$	85	87	85
902/893	892	884	863 783	877 881	1	2	2	6	5	6	$\delta_{R2} \over \gamma(C_2H)$	88	87	87 14
852	850	899	751 783	841 850	2	<1	<	<1	55	7	$\gamma(C_3H)$ $\gamma(C_5H)$	65 23	104	94
811	810	870	710	784	19	14	10	25	42	42	$\gamma(C_2H)$ $\gamma(C_5H)$	21 80	95	14 97
725/720	725/709	750	/39	792	26	27	14	(0	0	41	$\gamma(C_3H)$ $\gamma(C_2H)$	24	12	20
133/729	133/128	152	043	702	30	21	14	69	0	41	$\gamma(C_3H)$ $\gamma(C_3H)$	82 16 51	37	$\tau_{\rm R2}$
664	662	654	631 658	656 663	5	3	3	13	3	5	$ au_{ m R1}$	16	52 77 γ(C ₂ H)	$26 \tau_{\mathrm{R2}}$
637/634/630	636/631	618	576	62.0	14	10	8	7	44	13	37 τ _{P2}	25	52	33
	200,001	510	2.0	020		10	5	,		10	$\tau_{\rm R1}$ $\gamma(\rm C_2H)$	77	25 13	67
553/540/522	551/538	497	432	502	49	37	27	133	60	96	$\gamma(N_1H)$ $\gamma(N_1H)$	92	13 78	89 $\tau_{\rm Pl}$
22272 10/222	221,000	127	450	507	.,	57	_,	100	50	20	/ (* (1**)	23		US UNI

^{*a*} First row: uniform scaling factor 0.90; second row: scaling factor 0.89 for ν (NH). ^{*b*} First row: uniform scaling factor 0.96; second row: scaling factor 0.93 for ν (XH), and 1.00 for γ and τ . ^{*c*} First row: uniform scaling factor 0.97; second row: scaling factor 0.95 for ν (XH), 0.98 for γ and τ , and 0.975 for other. ^{*d*} Experimental intensities normalized to the RHF-calculated value for ν (N₁H) (103 km mol⁻¹). ^{*e*} Experimental intensities normalized to the MP2-calculated value for ν (N₁H) (77 km mol⁻¹). ^{*f*} Experimental intensities normalized to the DFT-calculated value for ν (N₁H) (57 km mol⁻¹). ^{*s*} PED for calculations performed at RHF, MP2, and DFT levels. Only contributions greater than 10 are listed. PED's are only relevant for the uniformly scaled frequencies.

TABLE 4: Experimental (Ar Matrix) and Calculated (RHF, MP2, or DFT/6-31G**) Vibrational Data for Imidazole (in a Band Pair the Most Intense Absorption Is Italicized)

ex	ptl	ca	lcd ν (cm	-1)	exp	otl I (km/r	nol)	cale	cd I (km/	mol				
ν (cm ⁻¹)	ref 15 (cm ⁻¹)	RHF ^a	$MP2^{b}$	DFT ^c	RHF ^d	MP2 ^e	DFT ^f	RHF	MP2	DFT	PED^g	RHF	MP2	DFT
3500	3504	3538	3590	3560	94	505	48	94	71	48	$\nu(N_1H)$	100	100	100
3114		3499 3110	3232	3487 3191	<1	<1	<1	4	1	2	$\nu(C_2H)$	81	84	89
			3131	3126					_		$\nu(C_3H)$	17	14	10
		3082	3203	3160				3	5	8	$\nu(C_3H)$	75	80	82
2000		2070	3103	3097	~1	~1	~1	0	~1	7	$\nu(C_2H)$	18	12	00
3090		3079	3107	3102	~1	~1	~1	9	~1	/	$\nu(C_5H)$	92	91	90
1524/1522	1518	1569	1511	1526	7	6	3	26	8	13	$\nu(C_2C_3)$	27	41	35
											$\delta(N_1H)$	12	17	15
											$\nu(N_4C_5)$	36	14	25
				1534							$\delta(C_3H)$	12	14	13
1483	1480	1498	1480	1472	13	10	7	27	21	19	$\nu(N_4C_5)$	16	26	21
				1480							$\delta(C_5H)$	17	25	21
											$\nu(C_5N_1)$	12	17	11
											$\delta(C_2H)$	21	15	
		=				_					$\nu(C_2C_3)$	27		19
1415/1407	1404	1427	1442	1405	12	9	6	26	19	16	$\nu(N_1C_2)$	13	31	19
				1411							$\partial(N_1H)$	44	27	37
											$\nu(C_5N_1)$	21		22
1220/1222	1205	1254	1247	1247	2	2	2	10	10	0	$\nu(C_2C_3)$	11	25	21
1559/1555	1525	1554	1347	1547	3	Z	Z	10	10	0	$\nu(N_4C_5)$	21	23	22
											$u(\mathbf{C}_{3}\mathbf{N}_{3})$	16	23	25 10
											$v(C_3(\mathbf{x}_4))$	10	23	19
1256	1252	1267	1252	1252	<1	<1	<1	1	1	1	$\delta(C_{\epsilon}H)$	49	46	49
1200	1202	1207	1202	1259	-	-	-	-	•	-	$\delta(C_3H)$	21	20	21
											$\nu(N_4C_5)$	11	18	13
											$\delta(C_2H)$	11		10
											$\nu(N_1C_2)$	13		
1132/1124	1130	1109	1152	1136	2	3	2	5	3	3	$\nu(C_5N_1)$	24	31	20
				1142							$\delta(C_2H)$	19	14	15
											$\nu(C_2C_3)$	16	11	11
											$\delta(C_3H)$	12	12	21
											$\partial(N_1H)$		18	14
1106/1102	1100	1100	1100	1110	2	2	1	4	4	~	$\partial(C_5H)$	50	12	12
1106/1103	1120	1128	1129	1119	3	2	1	4	4	5	$\nu(C_3N_4)$	59	23	59 50
1082/1076	1074	1068	1082	1060	11	Q	6	12	22	19	$\lambda(\mathbf{N}_1\mathbf{U}_2)$	19	29	32 27
1082/10/0	10/4	1008	1065	1009	11	0	0	15	22	10	$\delta(\mathbf{C},\mathbf{H})$	19	24	17
				1074							$v(C_3\Pi)$	13	15	13
											$\nu(O_2O_3)$ $\nu(N_1C_2)$	15	13	13
											$\nu(C_5N_1)$	30	10	20
1059/1048	1056	1040	1061	1049	30	23	15	57	25	34	$\delta(C_2H)$	22	35	31
				1054							$\nu(N_1C_2)$	47	16	26
											$\nu(C_5N_1)$		13	11
927	916	918	904	915 919	<1	<1	<1	2	2	2	$\delta_{ ext{R1}}$	85	88	86
902/893	892	886	866	877	2	<1	<1	7	7	8	$\delta_{ m R2}$	88	88	87
				881										
852	850	903	794	837	1	2	1	<1	17	5	$\gamma(C_3H)$	65	106	95
			827	846							$\gamma(C_5H)$	23		
											$\gamma(C_2H)$	21		13
811	810	872	746	782	17	13	8	15	39	29	$\gamma(C_5H)$	80	98	95
725/720	725/729	750	(71)	790	22	25	10	15	12	22	$\gamma(C_3H)$	25	07	20
135/729	135/128	/58	6/1	703	33	25	12	45	13	23	$\gamma(C_2H)$	83	87	89
661	667	660	699	/11	5	2	2	12	<1	2	$\gamma(C_3H)$	10	50	20
004	002	000	671	660	3	3	3	12	~1	3	ι_{R1}	∠1 83	30 /8	50 75
637/634/630	636/631	623	612	625	13	Q	3	7	37	13	τ_{R2}	26	34	37
0577054/050	050/051	025	622	632	15	,	5	1	51	15	τ_{P1}	20 78	58	66
				50-							$\gamma(N_1H)$		14	00
553/540/522	551/538	492	505	500	45	34	23	140	80	96	$\gamma(N_1H)$	94	77	90
			526	505							$ au_{ m R1}$		26	12

^{*a*} First row: uniform scaling factor 0.90; second row: scaling factor 0.89 for ν (NH). ^{*b*} First row: uniform scaling factor 0.96; second row: scaling factor 0.93 for ν (XH), and 1.00 for γ and τ . ^{*c*} First row: uniform scaling factor 0.97; second row: scaling factor 0.95 for ν (XH), 0.98 for γ and τ , and 0.975 for other. ^{*d*} Experimental intensities normalized to the RHF-calculated value for ν (N₁H) (94 km mol⁻¹). ^{*e*} Experimental intensities normalized to the MP2-calculated value for ν (N₁H) (71 km mol⁻¹). ^{*f*} Experimental intensities normalized to the DFT-calculated value for ν (N₁H) (48 km mol⁻¹). ^{*s*} PED for calculations performed at RHF, MP2, and DFT levels. Only contributions greater than 10 are listed. PED's are only relevant for the uniformly scaled frequencies.

gas phase values (Table 2),³² although the best results are obtained by the correlated MP2 and DFT methods. The RHF

method predicts bond lengths that are too short compared to the predictions of MP2 and DFT. The FTIR spectrum of IM TABLE 5: (A) *Ab Initio* Calculated Energy Components (au), Relative Energies (kJ/mol), and Dipole Moments (D) for Imidazole and Its Two 1:1 H-Bonded Complexes with H_2O and (B) Basis Set Superposition Error Corrected Interaction Energies^d

			imidazo	le…H ₂ O
		imidazole	N ₁ -H···OH ₂	N ₄ ····H—OH
		(A)		
RHF (au)	а	-224.832 787 9	-300.8735229	-303.874 112 9
	b	-224.824 299 1	$-301.858\ 030\ 2$	-300.8590169
$MP2^{a}$ (au)	а	-225.565 985 4	-301.810 985 5	-301.811 535 1
	b	-225.549 869 9	-301.781 578 1	-301.783 334 7
ZPE^{b} (au)	а	0.069 074 2	0.091 851 2	0.092 484 9
	b	0.069 206 84	0.091 868 4	0.093 041 1
total (au) RHF	а	-224.763 713 7	-300.781 671 7	-300.7816280
	b	$-224.755\ 092\ 7$	-300.766 161 8	-300.765 975 8
MP2	а	-225.496 911 0	-301.719 134 3	$-301.719\ 050\ 2$
	b	-225.480 663 5	-301.689 709 7	-301.690 2936
ΔE^c (kJ/mol) RHF	а		0.00	0.11
	b		0.00	0.49
MP2	а		0.00	0.22
	b		1.53	0.00
μ (D)	а	3.96	6.78	5.58
	b	3.86	6.75	4.59
		(B)		
RHF + ZPE (complex) (au)	а		-300.781 671 7	-300.7816280
MP2 + ZPE (complex)	а		-301.719 134 3	$-301.719\ 050\ 2$
RHF (base with ghost water orbitals)	а		-224.8329500	$-224.833\ 083\ 3$
MP2 (base with ghost water orbitals)	а		-225.5665699	-225.5669327
RHF (water with ghost base orbitals)	а		-76.031 783 6	-76.031 721 6
MP2 (water with ghost base orbitals)	b		-76.234 165 8	-76.233 688 7
H-bond energy $(+ZPE)$ (kJ/mol)				
RHF	а		-19.56	-19.44
	b		-21.91	-21.42
MP2	а		-27.52	-27.30
	b		-29.99	-28.61
ref 20 (6-311++ $G^{**}/MP2 + ZPE$)			-26.92	-23.31
H-bond energy (BSSE $+$ ZPE) RHF	а		-17.89	-17.58
MP2	а		-21.72	-21.80
ref 20 (6-31G*/MP2/BSSE + ZPE)			-23.65	-17.08

^{*a*} Only valence correlation is considered. ^{*b*} Calculated as $0.9 \sum hv_i/2$ with v_i the frequencies at the RHF level. ^{*c*} Energy difference between the two H-bonded complexes of imidazole. ^{*d*} All calculations were performed with molecular structures optimized at RHF/6-31++G** (a) or RHF/6-31G** (b) level.

TABLE 6: (A) *Ab Initio* Calculated Energy Components (au), Relative Energies (kJ/mol), Interaction Energies (kJ/mol), and Dipole Moments (D) for 1:1 H-Bonded Complexes of Imidazole with H₂O and (B) Basis Set Superposition Error Corrected Interaction Energies^a

			imidazo	le…H ₂ O
		imidazole	N_1 —H···OH ₂	N ₄ ····H—OH
		(A)		
MP2 (au)	а	-225.568 830 6	-301.814 946 6	-301.815 676 5
	b	-225.552 517 5	-301.785 433 9	-301.787 183 9
DFT	а	-226.235 509 0	-302.680 105 5	-302.681 758 4
	b	-226.2230960	-302.655 698 0	-302.657 169 5
MP2 + ZPE (au)	а	0.068 549 76	0.091 534 8	0.092 279 3
	b	0.069 368 83	0.092 632 8	0.093 723 8
DFT + ZPE	а	0.068 999 01	0.091 676 6	0.092 503 1
	b	0.069 124 14	0.092 229 5	0.093 328 5
total (au) MP2	а	-225.500 280 8	-301.723 411 8	-301.723 397 2
	b	-225.483 148 7	-301.692 801 1	-301.693 460 1
DFT	а	-226.166 510 0	-302.588 428 9	-302.589 255 3
	b	-226.153 971 9	-302.563 468 5	-302.5638410
μ (D) MP2	а	4.03	6.92	5.75
	b	3.87	6.29	4.75
DFT	а	3.87	6.73	5.94
	b	3.70	6.03	4.73
ΔE (kJ/mol) MP2	а		0.00	0.04
	b		1.73	0.00
DFT	a		2.17	0.00
	b		0.98	0.00
		(B)		
MP2 (with ghost imidazole functions)	а		-76.235 040 8	-76.235 382 3
DFT (with ghost imidazole functions)	а		-76.434 803 9	-76.434 768 8
MP2 (with ghost water functions)	а		-225.569 528 2	-225.569 183 0
DFT (with ghost water functions)	а		-226.235 669 2	-226.235 747 2
interaction energy (kJ/mol) MP2	а		-26.61	-26.57
	b		-28.55	-30.27
DFT	а		-22.13	-24.30
	b		-27.51	-28.49
interaction energy (BSSE corrected)			-21.41	-23.10
MP2	а			
DFT	b		-19.37	-21.42

^{*a*} All calculations were performed with molecular structures optimized at the MP2 or DFT $6-31++G^{**}$ (a) or $6-31G^{**}$ (b) level.

Figure 4. Fingerprint region of the FTIR spectrum of imidazole/Ar (A) and imidazole/H₂O/Ar ((B) H₂O/Ar = 1/500) at 12 K: \uparrow = N-H···OH₂ complex; * = N···H-OH complex.

Figure 5. $\nu_3 - \nu_1(H_2O)/\nu_{NH}$ (left) and ν_{ND} (right) spectral regions of the FTIR spectrum of imidazole- d_4 (70%)/H₂O/Ar at 12 K: (H₂O/Ar = 1/2000; $\dagger = N-D\cdots OH_2$ complex; * = N···HO-H complex).

isolated in Ar is shown in Figure 1. IM (C_s symmetry, Scheme 1) has 21 vibrational modes; 15 involve in-plane molecular distortions (A') and 6 involve out-of-plane distortions (A'').

The vibrational analysis is summarized in Tables 3 and 4, which compare experimental frequencies and intensities with predicted values obtained at the three different levels of theory

Figure 6. $v_3 - v_1(H_2O)/v_{NH}$ (left) and $v_3 - v_1(D_2O/HOD)$ region of the FTIR spectrum of imidazole/ $D_2O \rightarrow HOD \rightarrow H_2O/Ar$ ($D_2O/Ar = 1/500$): (A) before annealing; (B) after annealing at 38 K; $\dagger = N-H\cdots O$ complex; $* = N\cdots DO$ complex.

TABLE 7: Estimation of the Relative Concentrations of the N_1 -H···OH₂ and N_4 ···H-OH Complexes of Imidazole Using the Integrated Experimental Intensities (*I*) and the Predicted Intensities (a) at Different Levels of Theory Using the 6-31++G** (a) or the 6-31G** (b) Basis Set

method		I(3373)/ I(3394)	$a({ u^{ m b}}_{ m OH})/a(u_{ m N-H})$	[N ₁ —H····OH ₂] [N ₄ ····H—OH]
RHF	а	0.8	1.05	0.84
	b	0.8	0.55	0.44
DFT	а	0.8	1.62	1.30
	b	0.8	0.48	0.38
MP2	а	0.8	1.29	1.03
	b	0.8	0.60	0.48

as well as with those of the earlier matrix study.¹⁵ It must be mentioned that a very small amount of water impurities are manifested in the spectrum shown in Figure 1 (3800-3700 cm⁻¹). However, no trace of dimeric species can be observed in this spectrum.

At least seven experimental absorptions exhibit band splitting, which suggests that the IM molecules can appear in distinct orientations in the matrix. IM modes that are expected to be H-bonding sensitive are not only NH modes, which are easily assigned by comparison with the *ab initio* predictions, but also ring stretches with considerable C_3N_4 and N_4C_5 contributions. The out-of-plane mode γ_{NH} is not a pure group mode in this compound, although the large γ_{NH} PED contribution to the experimental absorption band below 600 cm⁻¹ allows this feature to be used for identification of H-bonding interactions.

It is well-known, and also demonstrated in Table 2, that RHF geometry optimization yields bond distances too short when compared to experimental values. Owing to the bond-distance dependence on the static electron correlation, the RHF potential energy surface, which does not include electron correlation contributions, is more sharply curved around the equilibrium geometry than are experimentally fitted potentials. Scaling factors are used to reduce the subsequent error in the vibrational frequencies. Additionally, contributions from vibrational anharmonicity may also become significant in vibrational modes with large amplitude. Single scaling factors of 0.89 or 0.90 for RHF frequencies are most often used. In previous studies,

lower scaling factors had to be used for vibrational modes with larger anharmonicity such as ν_{OH} (0.863) and ν_{NH} (0.890).³³ However, the success of the single scaling factor method for RHF-predicted frequencies indicates that the sum of the errors originating from vibrational anharmonicity and from the internuclear distance dependence on electron correlation energy is more or less constant.³⁴ The cancellation of errors, however, can be totally different for the correlated methods.

When a single scaling factor is used, the mean frequency deviation $|\nu^{exp} - \nu^{th}|$ is 17 cm⁻¹ at the RHF level, 41 cm⁻¹ at the MP2 level, and 23 cm⁻¹ at the DFT level of theory for the 6-31++G** basis set calculations. The modes that particularly deviate from the experimental frequencies are the ν_{XH} (X = N, C) and the γ_{CH} modes at 852, 811, and 729 cm⁻¹, and if these modes are excluded from the analysis, a mean RHF deviation of about 12 cm⁻¹ is obtained. Former RHF/3-21G or RHF/4-21G studies have resulted in mean deviations of 19 and 18 cm⁻¹, respectively.^{16,17} It might be surprising that in the case of MP2 calculations, taking into account electron correlation, the mean frequency deviation increases as compared to the RHF level of calculation. It seems that this finding is typical for the results of MP2 calculations performed for heterocyclic compounds, e.g., pyridine and pyrimidine derivatives.³⁴

The comparison of the overall shape of the predicted and the experimental spectra including the relative intensities of the bands leads to an even more convincing conclusion than that based on simple inspection of the mean frequency deviation. Figure 2 illustrates that the spectrum predicted at the DFT/ B3LYP level is very similar to the experimental one in the fingerprint region, while the spectra simulated at the MP2 or RHF level differ more from the experimental one. In methods where the potential energy surface (PES) is corrected for the electron correlation, such as DFT and MP2, anharmonicity may become a more significant relative contributor to the overall error in the frequency prediction. Because the anharmonicity contributions are not uniform over the range of the vibrational modes of a polyatomic molecule, a uniform scaling procedure is less appropriate for a method whose most significant error rests in the anharmonicity of the vibrations and not in the

TABLE 8: Experimental (Ar Matrix) and Calculated (RHF, MP2, DFT/6-31++G**) Vibrational Data for Water and Imidazole in the 1:1 H-Bonded Complex N_4 ···HO-H

					c	alcd											
	expt	1	$v^{b} ({\rm cm}^{-1})$)	Δι	v^{a} (cm ⁻¹)	Ι	(km/mo	ol)	optima	l scaling	, factor ^f		PED ^g		
ν (cm ⁻¹)	$\Delta v^a ({ m cm}^{-1})$	RHF ^c	$MP2^d$	DFT ^e	RHF	MP2	DFT	RHF	MP2	DFT	RHF	MP2	DFT		RHF	MP2	DFT
3702	-34	4231	3955	3883	-38	-55	Wat -47	er Vib 137	rations 105	73	0.875	0.936	0.953	$\nu^{\rm f}_{ m OH}$	78	72	66
3394	-244	4031	3649	3544	-116	-214	-263	455	707	860	0.842	0.930	0.958	$\nu^{\rm b}_{\rm OH}$ $\nu^{\rm b}_{\rm OH}$	22 78 22	28 72 28	34 66 34
1617?	+26	1771	1669	1643	+42	+50	+43	85	52	51	0.913	0.969	0.984	δ(HOH) N····HO wag	100	28 88 10	87 10
580?		650	718	722	146	102	98				0.892	0.808	0.803	δ (N····HO) ^f N····HO wag	68 25	84 16	83 18
h		342	371	382	117	114	107							N····HO wag ν (N····HO) δ (HOH)	63 33	80 12 12	78 12 12
h h		136 103	158 125	155 111	1.4 140	3 135	3 130							ν (N···HO) ···HO tors.	98 99	97 100	98 99
h h		43 23	43 25	46 30	5 11	6 8	4 10							oop butterfly ip butterfly	105 98	105 101	106 100
							Imida	zole V	ibratior	ıs							
3503	+1	3532	3572	3559 3107	-3 + 2	$^{-3}_{+2}$	$^{+1}_{+5}$	118	80 < 1	66 1	0.891	0.934	0.953	$\nu(N_1H)$	100	100	100
ı		5115	3220	5197	12	12	15	2	~1	1				$\nu(C_2H)$ $\nu(C_3H)$	21	21	15
i		3091	3212	3178	+4	+5	+14	2	2	2				$\nu(C_3H)$ $\nu(C_5H)$	43 41	97	97
		2000	2205	2171	1.4	2	17	2	2	2				$\nu(C_2H)$	15		
1		3090	3205	31/1	+4	-3	+/	3	2	3				$\nu(C_5H)$ $\nu(C_3H)$	58 36	78	83
1528 ^j	+6	1559	1504	1522	+2	+6	+6	26	7	14				$\nu(C_2H)$ $\nu(N_4C_5)$	34	21 25	15 25
1520	10	1557	1504	1322	12	10	10	20	,	14				$\nu(C_2C_3)$	27	41	34
														$\partial(N_1H)$ $\partial(C_3H)$	13 12	17 14	16 13
1490	+7	1492	1472	1468	+5	+8	+7	37	38	33				$\nu(C_2C_3)$	24	14	10
														$\delta(C_2H)$ $\delta(C_5H)$	18	25	21
														$\nu(N_4C_5)$ $\nu(C_5N_1)$	15 13	27 20	21 14
1414	+7	1425	1431	1403	+5	+4	+8	29	16	17				$\delta(N_1H)$	41	20	37
														$\nu(C_5N_1)$ $\nu(C_2C_3)$	20 14	17	21 12
1220	2	1246	1242	1226	1	1.4	1.2	10	0	6				$\nu(N_1C_2)$	11	31	17
1350/	-3	1540	1545	1330	-1	74	+3	10	0	0				$\delta(C_3H)$	52 21	24 23	22
														$\nu(C_3N_4)$ $\nu(N_4C_2)$	16 13	25	21
									-					$\delta(C_2H)$	11	10	10
1242	-14	1266	1246	1236	+2	+1	-11	1	2	1				$\delta(C_5H)$ $\delta(C_3H)$	46 21	44 22	46 22
														$\delta(C_2H)$	12	17	10
1117?	i	1130	1129	1119	+5	+7	+3	4	2	4				$\nu(N_4C_5)$ $\nu(C_5N_1)$	12 27	31	13
														$\delta(C_2H)$	18 15	14	11
														$\delta(C_3H)$	12		15
														$\delta(N_1H)$ $\delta(C_5H)$		23 13	18 13
1103	0	1108	1147	1137	0	+4	+5	8	4	5				$\nu(C_3N_4)$	55	53	50
1089/108	32	1071	1080	1072	+6	+3	+6	15	26	21				$\nu(N_1C_2)$ $\nu(C_5N_1)$	18 26	28	18 17
+	7/+6													$\delta(C_3H)$	19 15	26 20	22
														$\delta(N_1H)$	15	20 19	20
1061	+2	1038	1058	1048	+1	+4	+3	64	38	49				$\delta(C_2H)$ $\nu(N_1C_2)$	11 49	11 21	33
1001	12	1050	1050	1010			15	01	50	12				$\delta(C_2H)$	19	31	26
														$\nu(C_5N_1)$ $\delta(C_3H)$		12 11	
;		017	002	015	14	_1 1	1 2	n	2	1				$\delta(C_5H)$	07	07	11
i i		917 902	902 753	915 841	$^{+4}_{+3}$	$^{+1}$ +2	$+3 \\ 0$	2 <1	2 50	1 5				$\gamma(C_3H)$	83 50	87 103	83 91
														$\gamma(C_5H)$ $\gamma(C_2H)$	38 21		17
867	+15	899	876	889	+15	+13	+12	10	9	11				δ_{R2}	86	87	85
820	+9	879	723	792	+9	+13	+8	21	38	37				$\gamma(C_5H)$	65	95	97

TABLE 8: (Continued)

						calcd											
e	expt	1	$v^{b} ({ m cm}^{-1})$)	Δ	ν^{a} (cm ⁻	⁻¹)	Ι	(km/mc	ol)	optima	l scaling	factor ^f		PEI	\mathbf{D}^{g}	
$\overline{\nu}$ (cm ⁻¹)	$\Delta v^a ({ m cm}^{-1})$	RHF ^c	$MP2^d$	DFT ^e	RHF	MP2	DFT	RHF	MP2	DFT	RHF	MP2	DFT		RHF	MP2	DFT
							Imida	zole Vi	brations	s							
736	+7	756	649	708	+4	+4	+6	70	20	45				$\gamma(C_2H)$	80	59	87
														$\gamma(C_3H)$	18		
														$ au_{ m R2}$		30	
660 ^j	-4	655	637	654	+1	+6	-2	18	43	3				$ au_{ m R2}$	81		69
														$ au_{ m R1}$	19	56	30
														$\gamma(C_2H)$		21	
640/632		618	584	621	0	+8	+1	12	1	15				$ au_{ m R1}$	74	23	60
+	3/+2													$ au_{ m R2}$	25	57	36
568/543														$\gamma(N_1H)$	90	74	85
+1	5/+21	515	467	523	+18	+35	+21	130	65	95				$ au_{ m R1}$	12	28	18

^{*a*} Experimental shifts are calculated with respect to monomer frequencies, and calculated shifts are calculated with respect to calculated monomer frequencies. ^{*b*} Water modes unscaled, base modes uniformely scaled. ^{*c*} Scaling factor 0.90. ^{*d*} Scaling factor 0.96. ^{*e*} Scaling factor 0.97. ^{*f*} Optimal scaling factor = $\nu^{\exp}/\nu^{\text{calc}}$. ^{*g*} Only contributions ≥ 10 are listed. ^{*h*} Situated below observed region (<400 cm⁻¹). ^{*i*} Too weak to be observed experimentally or to be assigned with confidence. ^{*j*} Overlaps with a band due to the N—H…OH₂ complex.

TABLE 9: Experimental (Ar Matrix) and Calculated (RHF, MP2, or DFT/6-31G**) Vibrational Data for Water and Imidazole in the 1:1 H-Bonded Complex N₄…HO—H

		calcd															
e	expt	1	$v^{b} ({ m cm}^{-1})$)	Δ	v^a (cm ⁻	-1)	Ι	(km/m	ol)	optima	l scaling	g factor ^f		PED^g		
ν (cm ⁻¹)	$\Delta v^a (\mathrm{cm}^{-1})$	RHF ^c	$MP2^d$	DFT ^e	RHF	MP2	DFT	RHF	MP2	DFT	RHF	MP2	DFT		RHF	MP2	DFT
							W	ater Vi	bration	IS							
3702		4226	3974	3865	-42	-57	-54	104	73	44	0.875	0.936	0.953	$\nu^{\rm f}_{\rm OH}$	82 18	77 23	70 30
3394	-244	4067	3758	3637	-84	-134	-161	250	287	56	0.842	0.930	0.958	ν_{OH}^{b}	82	76	70
1 < 1 7 9	1.00	1000	1715	1.000	1.1.5	1.22	1.01	0.1	71	7	0.012	0.070	0.004	ν_{OH}	18	23	29
101//	+26	1802	1/15	1090	+15	+33	+31	292	210	0/	0.913	0.969	0.984	0(HOH)	93	91	90
580? h		000 206	708	218				283	219	277	0.892	0.808	0.805	O(IN····HO)	92	87	94
h h		182	215	228				117	106	99				•••HO tors	96	102	104
h		150	172	175				3	2	2				ν (N···HO)	99	102	101
h		67	94	89				16	16	16				ip butterfly	100	101	101
h		57	64	68				5	4	4				oop butterfly	111	113	112
							Imic	lazole V	Vibrati	ons							
3503	+1	3537	3590	3562	-1	0	+2	104	87	364	0.891	0.934	0.953	$\nu(N_1H)$	100	99	100
i		3113	3235	3196	+3	+3	+5	107	2	3				$\nu(C_2H)$	80	80	85
		2002		0101			1.10		2	2				$\nu(C_3H)$	18	17	15
1		3093	3222	3181	+14	+15	+19	54	3	3				$\nu(C_5H)$	97	97	98
ı		3086	3209	3167	+4	± 6	+/	61	3	4				$\nu(C_3H)$	80	83	8/
1528i	± 6	1568	1515	1520	-1	+1	+3	23	8	11				$v(\mathbf{C}_2\mathbf{\Pi})$	10	11	22
1520	10	1308	1515	1329	1	14	13	23	0	11				$v(\mathbf{N}_4\mathbf{C}_5)$	31	11	30
														$\delta(N_1H)$	12	16	15
														$\delta(C_3H)$	12	13	13
1490	+7	1501	1482	1473	+3	+2	+1	30	24	20				$\nu(C_2C_3)$	24		14
														$\delta(C_2H)$	20	12	18
														$\delta(C_5H)$	18	23	20
														$\nu(N_4C_5)$	18	30	25
	. –													$\nu(C_5N_1)$	13	23	15
1414	+7	1433	1445	1410	+6	+3	+5	11	15	16				$\partial(N_1H)$	42	26	37
														$\nu(C_5N_1)$	12	15	12
														$v(\mathbf{U}_2\mathbf{U}_3)$	12	33	12
1330/	-3	1351	1352	1342	-3	+5	+2	2	12	9				$v(N_1C_2)$ $v(N_4C_5)$	32	25	32
1550	5	1001	1002	1012	5	10	12	-	12					$\delta(C_2H)$	20	22	21
														$\nu(C_3N_4)$	17	25	21
														$\nu(N_1C_2)$	13		10
														$\delta(C_2H)$	11		10
1242	-14	1268	1248	1245	+1	-4	-7	4	2	2				$\delta(C_5H)$	46	44	44
														$\delta(C_3H)$	22	22	3
										-				$\nu(N_4C_5)$		16	12
1117?	i	1133	1135	1121	+5	+6	+2	8	1	3				$\nu(C_5N_1)$	26	29	16
														$O(C_2H)$	18	14	3
														$\nu(C_2C_3)$	13	10	15
														$\delta(N_1H)$	15	23	15
														$\delta(C_5H)$		15	14
1103	0	1111	1156	1143	+2	+4	+7	13	5	6				$\nu(C_3N_4)$	56	53	53
	~				. –				-	-				$\nu(N_1C_2)$	18	28	20
														$\nu(C_5N_1)$			12

Van	Bael	et	al.	

						calcd											
ex	kpt	1	v^b (cm ⁻¹)	Δ	v^a (cm ⁻	-1)	Ι	(km/mc	ol)	optima	l scaling	$factor^f$		PED) <i>g</i>	
ν (cm ⁻¹)	$\Delta \nu^a (\mathrm{cm}^{-1})$	RHF ^c	$MP2^d$	DFT ^e	RHF	MP2	DFT	RHF	MP2	DFT	RHF	MP2	DFT		RHF	MP2	DFT
							Imidaz	ole Vit	orations								
1089/1082	+7/+6	1074	1085	1075	+6	+2	+6	61	22	17				$\nu(C_5N_1)$	26		17
														$\delta(C_3H)$	19	26	20
														$\nu(C_2C_3)$	14	19	17
														$\delta(N_1H)$	15	19	20
														$\nu(N_1C_2)$		10	
1061	+2	1040	1063	1049	0	+2	0	1	33	45				$\nu(N_1C_2)$	49	21	32
														$\delta(C_2H)$	19	32	26
														$\nu(C_5N_1)$		10	
														$\delta(C_5H)$		12	13
														$\nu(C_3N_4)$		10	
i		919	905	915	+1	+1	0	2	1	1				$\delta_{ m R1}$	84	88	86
i		913	790	841	+10	-4	+4	13	6	1				$\gamma(C_3H)$	25	92	80
														$\gamma(C_5H)$	69	11	16
														$\gamma(C_2H)$	13		
867	+15	893	876	888	+7	+10	+11	12	19	22				$\delta_{ m R2}$	86	87	85
820	+9	889	782	819	+17	+36	+37	47	45	27				$\gamma(C_5H)$	35	93	90
														$\gamma(C_3H)$	62	14	18
736	+7	760	678	709	+2	+7	+6	14	85	29				$\gamma(C_2H)$	81	76	90
														$\gamma(C_3H)$	17		
660/	-4	661	660	664	+1	+3	+1	10	1	2				$ au_{ m R2}$	78	41	66
														$\tau_{\rm R1}$	24	55	37
(10)(200	12/12	(0.1	(10)	60 0				202	10	17				$\gamma(N_1H)$	=0	11	
640/632	+3/+2	624	613	629	+1	+1	+4	283	43	17				$ au_{ m R1}$	73	24	45
														τ_{R2}	30	6/	58
569/542	15/101	507	507	500	1.05	1.00	1.00	1.40	75	07				$\gamma(N_1H)$	02	18	00
568/543	+15/+21	587	527	522	+95	+22	+22	142	15	97				$\gamma(N_1H)$	92	/1	88
														$ au_{ m R1}$		32	14

^{*a*} Shift with respect to experimental or calculated monomer frequencies. Calculated water $\nu_3 - \nu_1 - \nu_2$ frequencies are 4268 - 4151 - 1787 (RHF), 4031 - 3892 - 1682 (MP2), and 3798 - 3911 - 1665 (DFT). ^{*b-j*} See Table 8.

TABLE 10:	Experimental (Ar Matrix)	and Calculated (RHF	F, MP2, or [DFT/6-31++G)	Vibrational D)ata for '	Water and
Imidazole in	the 1:1 H-Bonded Comple	x N ₁ -H···OH ₂					

						calcd											
e	expt	$\nu^b (\mathrm{cm}^{-1})$			$\Delta v^a ({ m cm}^{-1})$			I (km/mol)			optimal scaling factor ^f			PED^g			
ν (cm ⁻¹)	$\Delta \nu (\mathrm{cm}^{-1})$	RHF ^c	$MP2^d$	DFT ^e	RHF	MP2	DFT	RHF	MP2	DFT	RHF	MP2	DFT		RHF	MP2	DFT
							1	Vater V	Vibrati	ons							
3725	-11	4259	3997	3930	-10	-13	0	127	103	92	0.875	0.932	0.948	v ^a (HOH)	100	100	100
3632	-6	4142	3856	3812	-5	-7	+5	39	17	15	0.877	0.942	0.953	$\nu^{\rm s}({\rm HOH})$	100	100	100
1627?	+26	1747	1646	1621	+18	+27	+21	121	91	87	0.914	0.970	0.985	$\delta(HOH)$	99	97	95
h		243	250	247				59	48	47				H ₂ O oop transl. ^f	44	45	44
														H ₂ O ip wag	44	44	44
														ip butterfly	11	11	11
h		133	158	147				2	3	4				ν (N-H···O)	99	99	99
h		103	114	94				<1	2	4				H ₂ O twist	100	100	95
h		156	107	86				326	296	286				H ₂ O ip wag	44	49	47
														H ₂ O oop transl	49	48	46
h		59	60	59				1	1	2				ip butterfly	94	98	89
h		43	47	51				1	1	1				oop butterfly	98	100	97
							Im	idazole	- Vibra	tions							
3373	-127	3463	3467	3434	-72	-108	-124	435	547	530	0.877	0 934	0.953	$v(\mathbf{N},\mathbf{H})$	99	99	99
i 3373	127	3109	3222	3188	-2^{-2}	-4	124		2	2	0.077	0.754	0.755	$v(\Gamma_{2}H)$	80	80	86
ı		5107	5222	5100	2	-	0	5	2	2				$\nu(C_2H)$	18	18	12
i		3084	3204	3164	-3	-4	-4	1	2	2				$\nu(C_{e}H)$	83	97	96
i		5001	5201	5101	5		•		-	-				$v(C_2H)$	10	71	20
i		3082	3196	3159	-5	-6	-5	10	4	6				$\nu(C_2H)$	71	81	86
		2002	0170	0107	U	0	U	10	•	Ũ				$\nu(C_{e}H)$	15	01	00
														$\nu(C_2H)$	14	18	11
1528 ^j	+6	1558	1507	1520	+1	+9	+4	24	9	13				$\nu(N_4C_5)$	32	10	21
									-					$\nu(C_2C_3)$	24	31	28
														$\delta(N_1H)$	20	35	28
														$\delta(C_3H)$	11	10	11
1494	+11	1491	1468	1474	+4	+4	+13	34	25	23				$\delta(C_2H)$	20	14	19
														$\nu(C_2C_3)$	19		15
														$\delta(C_{5}H)$	18	26	22
														$\nu(C_5N_1)$	16	17	14
														$\nu(N_4C_5)$	15	27	20
1437/143	1	1439	1443	1417	+19	+16	+22	20	15	13				$\delta(N_1H)$	40	23	37
+2	2/+24													$\nu(C_2C_3)$	21	21	19

TABLE 10: (Continued)

	calcd																
e	xpt	1	$v^{b} ({\rm cm}^{-1})$)	Δ	v^a (cm ⁻	¹)	Ι	(km/mo	ol)	optima	l scaling	factor ^f		PED) ^g	
ν (cm ⁻¹)	$\Delta \nu ~({ m cm}^{-1})$	RHF ^c	$MP2^d$	DFT ^e	RHF	MP2	DFT	RHF	MP2	DFT	RHF	MP2	DFT		RHF	MP2	DFT
							Imidaz	ole Vit	orations								
														$\nu(C_5N_1)$	12	14	14
														$\nu(N_1C_2)$	11	22	13
1330 ^j	-3	1344	1340	1330	-3	+1	-3	12	10	9				$\nu(N_4C_5)$	33	23	31
														$\delta(C_3H)$	22	26	23
														$\nu(C_3N_4)$	16	26	18
														$\nu(N_1C_2)$	12		11
1257	+1	1264	1243	1247	0	-2	0	2	2	1				$\delta(C_5H)$	45	42	45
														$\delta(C_3H)$	20	20	20
														$\nu(N_4C_5)$	13	20	16
1140	+16	1133	1140	1133	+8	+18	+17	4	4	2				$\nu(C_5N_1)$	39	39	41
														$\delta(C_5H)$	14		15
														$\delta(N_1H)$	13		
														$\delta(C_2H)$	13		
														$\nu(C_3N_4)$		21	
														$\delta(C_3H)$			12
i		1116	1156	1137	+8	+13	+5	2	<1	2				$\nu(C_3N_4)$	53	28	58
														$\nu(N_1C_2)$	29	12	32
														$\delta(N_1H)$		18	
1089	+13	1076	1088	1082	+11	+11	+16	20	23	22				$\delta(C_3H)$	29	35	33
														$\nu(C2C_3)$	17	22	20
														$\nu(C_3N_4)$	16		
														$\nu(C_5N_1)$	13		
														$\nu(N_1C_2)$		12	12
1065	+6	1044	1100	1049	+7	+46	+4	54	26	34				$\nu(N_1C_2)$	38	13	20
														$\delta(C_2H)$	27	37	34
														$\nu(C_5N_1)$		13	13
														$\nu(C_3N_4)$		10	
														$\delta(C_5H)$			10
i		916	900	912	+3	-1	0	<1	<1	<1				$\delta_{ m R1}$	84	86	58
i		898	738	839	-1	-13	-2	<1	12	23				$\gamma(C_3H)$	55	95	84
														$\gamma(C_5H)$	32		15
														$\gamma(C_2H)$	21		
860	+8	889	871	884	+5	+8	+7	6	5	7				$\delta_{ m R2}$	88	88	87
813	+2	872	712	792	+2	+2	+8	25	33	102				$\gamma(C_5H)$	71	94	52
														$\gamma(C_3H)$	32		
														$\gamma(N_1H)$			29
														$\gamma(C_2H)$		12	
736 ^j	+7	760	647	710	+8	+2	+8	121	8	35				$\gamma(C_2H)$	70	66	88
														$\gamma(C_3H)$	13		
														$ au_{ m R2}$		29	
770																	
+217/+2	48	736	807	784	+239	+375	+282	35	133	4				$\gamma(N_1H)$	75		
														$\gamma(C_2H)$	11	66	88
														$\gamma(C_3H)$			14
660 ^j	-4	651	612	652	-3	-19	-4	42	5	25				$ au_{ m R2}$	102	15	102
														$ au_{ m R1}$		90	
618/612/6	506	594	534	596	-24	-42	-24	43	42	19				$ au_{ m R1}$	97	20	100
-21/-24	/-24													$ au_{ m R2}$		64	
														$\gamma(C_2H)$		21	

a-i See Table 8.

accounting for the electron correlation effects. Therefore, a single scaling factor is less appropriate for correlated methods than for the RHF method. This explains the larger mean deviations obtained with the DFT and MP2 methods than with the RHF method, in which a single scaling factor is used. For the correlated methods, the use of different scaling factors for different vibrational modes, reflecting the differences in anharmonicity, will be relatively more important than for a noncorrelated method such as RHF.

For example, when different scaling factors are used for the DFT frequency predictions, e.g., 0.975 for all modes, except $v_{\rm XH}$ and $\gamma_{\rm R}$ modes for which scaling factors of 0.950 and 0.980 are used, respectively, the mean frequency deviation decreases to 10 cm⁻¹. When the same procedure is applied to the MP2-predicted frequencies, by use of a scaling factor of 0.960 for all modes except the $v_{\rm XH}$ (0.930) modes and the $\gamma_{\rm XH}$ and $\gamma_{\rm R}$ modes (1.00), the mean deviation decreases only to 23 cm⁻¹. The use of different scaling factors for frequencies belonging

to different types of vibrational modes seems imminent in this case, and it has been proposed by several authors.^{8,35}

On inspection of Tables 3 and 4, we can compare the PED analysis at different levels of theory. The differences between the DFT and MP2 PED's are smaller than between the RHF and DFT, and RHF and MP2. For some of the vibrational modes, particularly for those with comparable frequencies, the main internal mode contribution is often different for different methods. In consequence, the assignment varies with the level of theory and it is difficult to determine which method gives the most reliable result. This feature has also been noted by others in the DFT study on cytosine.¹³ For the vibrational modes with frequencies at 1124 and 1103, and at 893 and 852 cm⁻¹, a conclusive assignment is difficult but most probably the DFT method gives the best description.

The RHF method provides much higher values of absolute intensities of the IR modes than the MP2 and the DFT methods. Probably the former values are seriously overestimated. Both

TABLE 11: Experimental (Ar Matrix) and Calculated (RHF, MP2 or DFT/6-31G**)Vibrational Data for Water and
Imidazole in the 1:1 H-Bonded Complex N_1 —H···OH2

		calcd															
e	expt	1	v^b (cm ⁻¹	¹)	Δ	$\Delta \nu^a ({ m cm}^{-1})$			I (km/mol)		optimal scaling factor ^f			PED ^g			
ν (cm ⁻¹)	$\Delta \nu (\text{cm}^{-1})$	RHF ^c	$MP2^d$	DFT ^e	RHF	MP2	DFT	RHF	MP2	DFT	RHF	MP2	DFT		RHF	MP2	DFT
3725 3632 1617? h	-11 -6 +26	4264 4148 1765 234	4020 3886 1674 275	3915 3803 1652 290	$-4 \\ -3 \\ -22$	$-11 \\ -6 \\ -8$	+4 +5 -13	Water 99 37 94 60	Vibrati 70 19 69 15	ons 53 13 62 7	0.874 0.876 0.904	0.927 0.935 0.953	0.951 0.955 0.966	ν^{a} (HOH) ν^{s} (HOH) δ (HOH) H ₂ O oop transl. ^f H ₂ O in wag	100 100 98 44 44	100 100 98 45 44	$100 \\ 100 \\ 98 \\ 45 \\ 45 \\ 45$
h		83	205	237				308	274	271				ip butterfly H ₂ O ip wag	13 44	47	48
h h		138 95	160 87	164 86				2 2	2 38	4 43				ν (N-H···O) H ₂ O twist	99 99	40 98 59	48 99 55
h		56	53	53				2	18	19				ip butterfly ip butterfly H_2O twist	91	41 57 40	45 54 44
								•••	1 17'1					oop butterfly	89	97	97
3373	-127	3455	3438	3376	-83	1524	In -184	nidazol 453	le Vibra 597	ations 623	0.879	0.942	0.969	$\nu(N_1H)$	99	99	99
i ;		3107	3228	3188	-23	-4	-3	6	2	3				$\nu(C_2H)$ $\nu(C_3H)$ $\nu(C_3H)$	83 15	85 13 27	89 10
		3078	5196	5155	4		5	~1	11	1				$ \begin{array}{l} \nu(C_3H) \\ \nu(C_2H) \\ \nu(C_2H) \end{array} $	44 44 11	56	58
i		3076	3200	3152	-3	-7	-10	18	<1	16				$\nu(C_3H)$ $\nu(C_5H)$ $\nu(C_2H)$	40 55 14	30 62 18	32 66 11
1528 ^j	+6	1558	1507	1520	+1	+9	+4	24	9	13				$\nu(N_4C_5)$ $\nu(C_2C_3)$ $\delta(N_1H)$ $\delta(C_2H)$	32 26 18	30 37	19 29 28
1494	+11	1502	1486	1478	+4	+6	+6	30	19	20				$\delta(C_2H)$ $\nu(C_2C_3)$ $\delta(C_5H)$	19 20 18	10 12 26	18 13 22
1437/143 +2	31 2/+24	1439	1443	1417	+19	+16	+22	20	15	13				$\nu(C_5N_1)$ $\nu(N_4C_5)$ $\delta(N_1H)$ $\nu(C_2C_3)$	16 17 42 19	20 29 22 24	15 22 37 20
1330 ^j	-3	1350	1352	1337	-4	+5	-3	13	13	13				$\nu(C_5N_1) \\ \nu(N_1C_2) \\ \nu(N_4C_5) \\ \nu(C_5N_1) \\ \nu(C_$	14 11 32	11 24 22	13 13 31
														$\nu(C_3H)$ $\nu(C_3N_4)$ $\nu(N_1C_2)$ $\delta(C_2H)$	16 12 11	26 23	24 18 11
1257	+1	1267	1251	1253	0	-1	+1	1	2	1				$ \delta(C_5H) \delta(C_3H) \nu(N_4C_5) $	45 20 13	42 19 22	44 20 17
1140	+16	1138	1150	1142	+10	+21	+23	3	4	3				$ \begin{array}{l} \delta(C_2H) \\ \nu(C_5N_1) \\ \delta(C_5H) \\ \delta(N_1H) \\ \end{array} $	10 38 15 13	36	41
i		1120	1169	1143	+11	+17	+7	2	<1	<1				$ \nu(C_{3}N_{4}) \nu(C_{3}N_{4}) \nu(N_{1}C_{2}) $	14 54 30	27 23 30	17 41 36
1089	+13	1081	1097	1082	+13	+14	+13	15	17	17				$\delta(N_1H)$ $\delta(C_3H)$ $\nu(C2C_3)$ $\nu(C_3N_4)$	29 16 17	18 37 21	11 36 20
1065	+6	1047	1063	1049	+7	+2	0	50	20	27				$ \begin{array}{l} \nu(C_5N_1) \\ \nu(N_1C_2) \\ \nu(N_1C_2) \\ \delta(C_2H) \\ \nu(C_5N_1) \end{array} $	13 38 27	11 13 38 13	11 19 35 13
i i		919 900	903 781	912 792	$^{+1}_{-3}$	1-1 - 13	30 -45	<1 <1	1 <1	2 33				$\nu(C_3N_4)$ $\delta(C_5H)$ δ_{R1} $\nu(C_3H)$	10 84 56	10 87 98	85 44
860	+8	891	875	884	+5	+9	+7	8	9	9				$\gamma(C_{5}H)$ $\gamma(C_{2}H)$ $\gamma(N_{1}H)$ δ_{R2}	31 21 88	88	38 88
813	+2	872	743	784	0	-3	+2	16	31	17				$\gamma(C_5H)$	72	97	92

TABLE 11: (Continued)

		calcd															
expt		$\nu^b (\mathrm{cm}^{-1})$			Δ	v^a (cm ⁻	⁻¹)	Ι	(km/mo	ol)	optima	l scaling	factor ^f		PEI) ^g	
ν (cm ⁻¹)	$\Delta \nu (\text{cm}^{-1})$	RHF ^c	$MP2^d$	DFT ^e	RHF	MP2	DFT	RHF	MP2	DFT	RHF	MP2	DFT		RHF	MP2	DFT
							Imidaz	ole Vib	orations								
														$\gamma(C_3H)$ $\gamma(C_2H)$	32	12	
736 ^j	+7	764	676	710	+6	+5	+7	91	12	18				$\gamma(C_2H)$	71	85	86
														$\gamma(C_3H)$	11		10
														$\gamma(C_5H)$		11	10
770		741	847	839	+249	+342	+339	46	114	62				$\gamma(N_1H)$	73	85	86
+217/+2	48													$\gamma(C_2H)$	11		
														$\gamma(C_3H)$			47
660 ^j	-4	656	644	652	-4	-13	-11	43	26	21				$ au_{ m R2}$	102	88	101
														$ au_{ m R1}$		19	
618/612/6	506	599	588	596	-24	-24	-29	43	5	12				$ au_{ m R1}$	96	94	110
-21/-24	/-24													$ au_{ m R2}$		18	11
														$\gamma(N_1H)$	11		

^{*a-i*} See Table 9.

calculations, which take into account electron correlation effects (MP2 and DFT), give similar magnitudes of the absolute intensities. The relative intensities of the absorption bands in the spectrum predicted by the DFT method are closest to the relative intensities measured in the experimental spectrum.

Comparison of Tables 3 and 4 demonstrates the basis set dependence of the frequency calculations $(6-31++G^{**})$ and $6-31G^{**}$. Slightly better results, in terms of mean deviations, are obtained for the SCF and DFT methods with the larger basis set. Surprisingly, the opposite is true for the MP2 method.

H-Bonded Complexes with H₂O. Two H-bonded complex structures of IM are considered in this work: the N₁—H···OH₂ and N₄···H—OH structures. The optimized geometries of these structures are shown in Scheme 1. Tables 5 and 6 summarize the results of the energy calculations for the H-bonded complexes at all levels of theory employed. All three levels of theory, predict the N₄···H—OH and N₁—H···OH₂ water complex as being equally stable. The differences in relative energy, ΔE , of the N₄···H—OH and the N₁—H···OH₂ complex are very small: 0.22 (MP2/6-31++G**)/SCF/6-31++G**), 0.04 (MP2/6-31++G**), and 2.17 (DFT/6-31++G**) kJ/mol.

The H-bond interaction energies for the two complexes range from 19 to 30 kJ/mol, depending on the method employed. The H-bond interaction energies are the lowest for the RHF method and the highest for the MP2 method. The BSSE error is evaluated at 6 kJ/mol for the MP2 method and at 2 kJ/mol for the RHF method. The MP2//MP2 interaction energies correspond very well with the interaction energies obtained at the MP2//RHF level, with the maximum difference being only 2 kJ/mol. The differences in interaction energies originate mainly from the contribution of the dispersion term in the total interaction energy. The dispersion term is not accounted for at the RHF level and, from the difference in interaction energies at the RHF and MP2 levels, can be estimated at 4–5 kJ/mol for the IM•water complexes.

The present results can be compared with the recent data published by Nagy *et al.*²⁰ With the slightly more extended basis set (6-311++G**) at the MP2 + ZPE level, the value of the H-bond interaction energy for the N₁-H···OH₂ complex obtained by these authors is extremely close to the value of the present work. However, a rather large deviation is found for the N₄···HO-H complex of IM. In our opinion, the significantly smaller value quoted by Nagy *et al.* for this structure is due in part to their large difference (about 3.1 kJ/mol) from the Δ ZPE contribution between the two isomeric complexes. Such a large ZPE difference is difficult to understand for isomeric H-bonded complexes where only the intermolecular modes can differ more significantly. As a matter of fact, this Δ ZPE term amounts to only 1.7 kJ/mol in our calculations. We therefore consider the value for the N₄···HO—H complex of IM listed in the tables by Nagy *et al.* as questionable. A reliable comparison between the BSSE-corrected interaction energies is more difficult, since the numbers quoted by Nagy *et al.* have been obtained with the less extended basis set 6-31G*. Nevertheless, the agreement for the N₁—H···OH₂ structure is again rather good, while the value for the N₄···HO—H complex may be affected by the same Δ ZPE problem mentioned above.

The predicted water bond distance is about ± 0.02 Å shorter at the RHF level than for the MP2 and DFT methods. The H-bond distances (N····O) for the two complexes are ± 0.1 Å higher at the RHF level than for MP2 and DFT. The shorter H-bond distances for the MP2 and DFT methods can be explained by a better description of all terms contributing to the H-bond energy and the account for dispersion energy contributions.

The FTIR spectrum of IM/H2O/Ar is shown in Figures 3 and 4. Two strong complex bands appear in the region below the NH stretch at 3394 and 3373 cm^{-1} , respectively. If, as can be expected from the energy calculations listed in Tables 5 and 6, both the N1-H···OH2 and the N4···HO-H complex species will be present in the matrix sample, a shifted $v_{\rm NH}$ mode and a rather strongly shifted water v^{b}_{OH} mode should be observed in that spectral region. In view of the proton affinity (PA) value of 930 kJ/mol for IM 36 and the correlation relating $\Delta\nu^{b}{}_{OH}$ to PAB established earlier for some N···HO-H complexes in Ar,^{2,33,37} the ν^{b}_{OH} mode for water acting as a proton donor in the N····HO-H complex with IM is expected to be near 3400 cm^{-1} . However, the closeness of the complex bands at 3394 and 3373 cm⁻¹ does not allow assignment of the former to the $v^{\rm b}_{\rm OH}$ mode using the above argument alone, and deuteration experiments have been performed to discriminate between the two bands. The presence of the two complex species, N-H···OH₂ and N···HO-H, is also manifested by the appearance of two shifted water ν_3 bands in the spectrum shown in Figure 3 at 3725 and 3702 cm⁻¹, respectively. The former frequency is the same as that assigned to the water acceptor v_3 mode for the N-H···OH2 complex of pyrrole23 and is also close to the 3724 and 3721 cm⁻¹ for the O–H···OH₂ complexes of 3- and 4-hydroxypyridine, respectively.^{38,1d} The v_3 mode observed at 3702 cm⁻¹ is very close to the $\nu_{\rm OH}^{\rm f}$ frequency of water in the N···HO-H H-bonded structures of water with pyridine (3701) and with pyrimidine (3703),1b with 4-OHpyridine (3703),^{1d} and with 4-NH₂-pyridine (3702).^{1c} A similar asymmetric, double frequency shift is also observed in the water v_2 region close to the water dimer acceptor mode $(1593 \text{ cm}^{-1})^{39}$ at 1596 cm⁻¹ and to the water dimer donor mode $(1612 \text{ cm}^{-1})^{39}$ at 1617 cm⁻¹ (Figure 4). The latter frequency is again not far from the proton-donor v_2 mode in the N···HO—H complexes of water with pyridine (1616) and pyrimidine (1615)^{1b} and with 4-OH-pyridine (1619).^{1c} However, the former band is much less displaced from the monomer v_2 band than predicted at all three levels of theory, and its assignment is questionable.

The results of two deuteration experiments are illustrated in Figures 5 and 6. The first spectrum is that of a sample of IM d_4 (70%)/H₂O/Ar, which allows information to be obtained from both the $v_{\rm NH}$ and the $v_{\rm ND}$ spectral regions. The free $v_{\rm ND}$ mode of the partially deuterated compound appears as an intense, triplet-split band at 2594/2588/2582 cm⁻¹. This yields the isotopic ratio (ISR) $v_{\rm NH}/v_{\rm ND}$ value of 1.357. In the $v_{\rm NH}$ spectral region of the water-doped sample (Figure 5), the complex band at 3394 cm^{-1} is much stronger than that at 3373 cm^{-1} . This is the first indication that the band at 3394 cm^{-1} is due to the v^{b}_{OH} mode in the N₄···HO-H complex, while the band at 3373 cm⁻¹ corresponds to the shifted $\nu_{\rm NH}$ mode in N₁-H···OH₂. Further support for this assignment is obtained from the observation of the corresponding complex band $v_{\rm ND}$... in the $v_{\rm ND}$ region at 2505 cm⁻¹ yielding a quite acceptable ISR value of 1.347.

Although the spectrum of IM/D₂O/Ar (Figure 6) is somewhat complicated by isotopic exchange $D_2O \rightarrow HOD (\rightarrow H_2O)$, the band at 2493 cm⁻¹ definitely does not correspond to a D₂O or HOD dimer, trimer, absorption.^{39,33} It can only be assigned to the ν^{b}_{OD} mode of the N···DO-D(H) H-bonded structure, and its ISR value is 1.361. The $v_{\rm NH}$ region of this spectrum shows a complex band at 3364 cm⁻¹ and a very weak shoulder at 3373 cm^{-1} . The latter can be explained by the isotopic exchange of D₂O leading to a small amount of H₂O in the sample, which forms a small amount of N-H···OH₂ species. The bonded v_{NH} ... mode of the more abundant N-H····O-DD-(H) complex absorbs at a slightly lower frequency than that of the N-H···OH₂ complex, and this effect of isotopic fortification of an H-bond is well-known, e.g., for the water dimer (ν_{OD} for HOD••••OH₂ at 2639 cm⁻¹ but for HOD••••OD₂ at 2635 cm⁻¹).³⁹ All the deuteration results allow us to unambiguously assign the complex band at 3394 cm⁻¹ to the v^{b}_{OH} mode in the N····HO—H species and the 3373 cm⁻¹ feature to the $v_{\rm NH}$ mode in the N-H···OH₂ species for the non-deuterated IM·H₂O complexes. The absorptions attributed above to the N_1 -H···OH₂ and N₃···H-OH complexes are certainly not due to vibrations in the imidazole dimer. Dimerization of imidazole occurs above sublimation temperatures of 25 °C and is characterized by a broad absorption with a maximum around 2950 cm⁻¹ in the high-frequency region.²³

Relative Concentration of the N-H···OH₂ and N···HO-H Complexes. In order to compare the experimental data as accurately as possible with the theoretical predictions, intensity measurements for the two representative complex absorptions 3394 (ν^{b}_{OH}) and 3373 (ν_{N-H} ...) cm⁻¹ need to be performed for spectra where (i) preferably only 1:1 complexes are present in the matrix and (ii) the two nearby absorptions are clearly separated (this happens when the absorptions are rather weak). The first condition is difficult to fulfill in the case of water complexes, since this compound has a strong tendency for selfassociation and even at low matrix-to-solute ratios a small amount of water is always present. Nevertheless, a spectrum that satisfies quite well the two conditions has been obtained, and it is shown in Figure 3B. The relative concentration of the two complexes of IM with water calculated using experimental relative intensities (I) from this spectrum and the theoretically predicted intensities (a) (Tables 8-11) can be calculated as

$$[N_1 - H \cdots OH_2] / [N_4 \cdots H O - H] = (I(3373)/I(3394))(a(\nu_{OH}^b)/a(\nu_{N-H}...)))$$

Table 7 summarizes the results for the relative abundances of the two complexes. Rather large differences are obtained depending on the method employed. This is due to the expected, significant inaccuracy of the theoretical prediction of absolute intensities of the bands due to the vibrations of groups directly engaged in the H-bond interaction. The almost 1:1 ratio of the two complex species N1-H···OH2 and N4···HO-H (obtained with the predicted intensities of the $6-31++G^{**}$ basis set) is consistent with very small relative energies (Tables 5 and 6). Table 7 demonstrates the differences in the relative abundances calculated with the theoretical results obtained with the two basis sets employed. The predicted intensity of the ν^{b}_{OH} water mode in the N₄···H-OH complex is about 2 times higher for the $6-31++G^{**}$ basis set than for the $6-31G^{**}$ basis set. The better description of the frequency shift of this mode upon H-bonding (see Tables 8 and 10), with the diffuse functions added to the basis set, suggests that the results obtained with the 6-31++G** basis set are probably more reliable.

Although the interaction energies for the H-bond interaction between water and IM do not strongly depend on whether the basis set includes diffuse orbitals, the opposite is true for the predicted frequency shifts, especially for the normal modes directly influenced by the H-bond formation. Tables 8 to 11 summarize the experimental and theoretical vibrational data.

The most perturbed vibrational mode in the N₄···H-OH complex is the ν^{b}_{OH} water mode. The best account for the frequency shift of this mode is obtained with the MP2 and DFT methods with the 6-31++G** basis set. The improvement of the prediction of this frequency shift is remarkable when the diffuse functions are included in the basis set. A better description of the σ interaction of the lone pair of nitrogen with the molecular orbitals of water resulting from including diffuse orbitals is the likely reason for this improvement. One can also note the slightly better prediction of the frequency shifts of the IM vibrations by the DFT method. However, with a few exceptions only, rather good predictions are also obtained with the RHF/6-31++G** method.

The $\nu_{\rm NH}$, $\delta_{\rm NH}$, and $\gamma_{\rm NH}$ vibrations are the modes most perturbed by the formation of the N₁—H···OH₂ H-bonded complex. Also in this case, the best frequency shifts for the $\nu_{\rm NH}$ mode are obtained with the MP2 and DFT methods with the 6-31++G** basis set. For the two other modes, it is difficult to indicate the best method, but here also, slightly better results are obtained when extra diffuse functions are added to the basis set. The relatively strong frequency increase predicted for the $\delta_{\rm NH}$ mode in N₁—H···OH₂ is experimentally confirmed by the appearance of the complex band at 1437/1431 cm⁻¹, while a very large shift of the $\gamma_{\rm NH}$ mode is manifested by the rather broad absorption at 770 cm⁻¹. Such a large frequency perturbation of this internal IM mode is not anticipated based on the magnitude of the N₄···HO—H H-bonding interaction.

As far as the internal IM modes are concerned, rather weak frequency perturbations are observed for most ring stretches and CH deformations, and these can be identified by comparison with the *ab initio* spectral predictions (Tables 10 and 11). Also in this case, slightly better predictions for the IM mode shifts are obtained with the DFT/6-31++G** method.

Summary

Experimental matrix-isolation FTIR spectroscopy and *ab initio* theoretical calculations were applied to investigate the H-bonding interaction of water with IM. Formation of N₁-H···OH₂ complexes is manifested in the experimental

Complexes of Imidazole

spectra by relatively strong perturbations of the NH stretching and in-plane and out-of-plane deformation modes and by weak perturbations of the bonded proton acceptor. On the other hand, the N₄···HO—H complex of IM, which is about equal in strength compared to the isomeric N₁—H···OH₂ complex of this compound, induces stronger perturbations of the bonded water modes. Spectral features due to these two complexes can be distinguished by careful comparison with the *ab initio* predicted spectra. The DFT method with the basis set including diffuse functions yields considerably better frequency predictions for vibrational modes directly involved in the H-bond interactions, e.g., ν^{b}_{OH} for N₄···HO—H or ν_{NH} for N₁—H···OH₂, and slightly better shift predictions for the internal IM modes.

Acknowledgment. This work was part of an ECC research project S&T Cooperation with Central and Eastern European Countries (ERB CIPA-CT 93-0108), and G. Maes and M. J. Nowak acknowledge support from the ECC Commission. The cooperation between the groups of Leuven and Tucson was supported by the NATO International Collaborative Grant INT-9313268. J. Smets acknowledges the support of the Belgian IWONL. L. Adamowicz and J. Smets acknowledge the support from the Office of Health and Environmental Research, Office of Basic Energy Research, Department of Energy (Grant No. DEFG0393ER61605). G. Maes also acknowledges the Belgian NFWO for a permanent research fellowship.

References and Notes

(a) Smets, J.; Adamowicz, L.; Maes, G. J. Mol. Struct. 1994, 322,
 (b) Destexhe, A.; Smets, J.; Adamowicz, L.; Maes, G. J. Phys. Chem.
 1994, 98, 1506. (c) Smets, J.; Adamowicz, L.; Maes, G. J. Phys. Chem.
 1995, 99, 6387. (d) Buyl, F.; Smets, J.; Maes, G.; Adamowicz, L. J. Phys.
 Chem. 1995, 99, 14697. (e) Smets, J.; Adamowicz, L.; Maes, G. J. Phys.
 Chem., in press. (f) Smets, J.; Destexhe, A.; Adamowicz, L.; Maes, G. J.
 Phys. Chem., submitted. (g) Smets, J.; Destexhe, A.; Adamowicz, L.; Maes, G. J.

(2) Smets, J.; McCarthy, W.; Maes, G.; Adamowicz, L. J. Am. Chem. Soc., submitted.

(3) Sim, F.; St-Amant, A.; Papai, I.; Salahub, D. R. J. Am. Chem. Soc. 1992, 114, 4391.

(4) Johnson, B. G.; Gill, P. M. W.; Pople, J. A. J. Chem. Phys. 1993, 98, 5612.

(5) Mijoule, C.; Latajka, Z.; Borgis, D. Chem. Phys. Lett. 1993, 208, 364.

(6) Latajka, Z.; Bouteiller, Y. J. Chem. Phys. 1994, 101, 9793.

(7) Kim, K.; Jordan, K. D. J. Phys. Chem. 1994, 98, 10089.

(8) Rauhut, G.; Pulay, P. J. Phys. Chem. 1995, 99, 3093.

(9) Del Bene, J. E.; Person, W. B.; Szczepaniak, K. J. Phys. Chem. 1995, 99, 10705.

(10) Barone, V.; Adamo, C. J. Phys. Chem. 1995, 99, 15062.

(11) Topol, I. A.; Burt, S. K.; Rashin, A. A. Chem. Phys. Lett. 1995, 247, 112.

(12) Adamo, C.; Lelj, F. Int. J. Quantum Chem. 1995, 56, 645.

(13) Kwiatkowski, J. S.; Leszczynski, J. J. Phys. Chem. 1996, 100, 941.

(14) Bellocq, A.; Perchard, C.; Novak, A.; Josien, M. J. Chim. Phys. Phys.-Chim. Biol. **1965**, 11/12, 1334. Perchard, C.; Bellocq, A.; Novak, A.

J. Chim. Phys. Phys.-Chim. Biol. 1965, 11/12, 1344.

(15) King, S. T. J. Phys. Chem. 1970, 74, 2133.

(16) Majoube, M.; Vergoten, G. J. Mol. Struct. 1992, 266, 345.

(17) Fan, K.; Xie, Y.; Boggs, J. E. J. Mol. Struct.: THEOCHEM. 1986, 136, 339.

(18) Zheng, Y.; Merz, K. M. J. Comput. Chem. 1992, 13, 1151.

(19) Alagona, G.; Ghio, C.; Nagy, P. I.; Simon, K.; Naray-Szabo, G. J.

Comput. Chem. 1990, 11, 1038.
(20) Nagy, P. I.; Durant, G. J.; Smith, D. A. J. Am. Chem. Soc. 1993, 115, 2912.

(21) Maes, G. Bull. Soc. Chim. Belg. 1981, 90, 1093.

(22) Graindourze, M.; Smets, J.; Zeegers-Huyskens, Th.; Maes, G. J. Mol. Struct. 1990, 222, 345.

(23) Van Bael, M. K. M.Sc. Thesis, University of Leuven, Heverlee, Belgium, 1994.

(24) Szabo, A.; Ostlund, N. S. *Modern Quantum Chemistry*; McGraw-Hill: New York, 1989.

(25) Chatasinski, G.; Szczesniak, M. Chem. Rev. 1994, 94, 1723.

(26) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

(27) Parr, R. G.; Yang, W. Density-functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.

(28) Frisch, C. P. M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, W. M.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogie, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzales, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. GAUSSIAN 92; Gaussian Inc.: Pittsburgh, PA, 1992. Frisch, C. P. M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzales, C.; Pople, J. A. GAUSSIAN 94; Revision B.3; Gaussian Inc.: Pittsburgh, PA, 1995.

(29) Califano, S. Vibrational States; Wiley: New York, 1976.

(30) Boys, S. F.; Benardi, F. Mol. Phys. 1970, 19, 553.

(31) Van Duijneveldt, F. B.; van Duijneveldt- van de Rijdt, J. G. C. M.; van Leuthe, J. H. *Chem. Rev.* **1994**, *94*, 1973.

(32) Christen, D.; Griffiths, J. H.; Sheridan, J. Z. Naturforsch. 1982, 37A, 1378.

(33) Smets, J. Ph.D. Thesis, University of Leuven, Heverlee, Belgium, 1993.

(34) Kwiatkowski, J. S.; Leszczynski, J.; Nowak, M.; Lapinski, L. To be published.

(35) Person, W. B.; Szczepaniak, K. Vibrational Spectra and Structure; Durig, J. R., Ed.; Elsevier: Amsterdam, 1993; Vol. 2, p 239.

(36) Lias, S. G.; Liebman, J. F.; Levin, R. D. J. Phys. Chem. Ref. Data 1984, 13, 695.

(37) Maes, G.; Smets J. J. Mol. Struct. 1992, 270, 141.

(38) Person, W. B.; Del Bene, J. E.; Szajda, W.; Szczepaniak, K.; Szczesniak, M. J. Phys. Chem. 1991, 95, 2770.

(39) Engdahl, A.; Nelander, B. J. Mol. Struct. 1989, 193, 101.